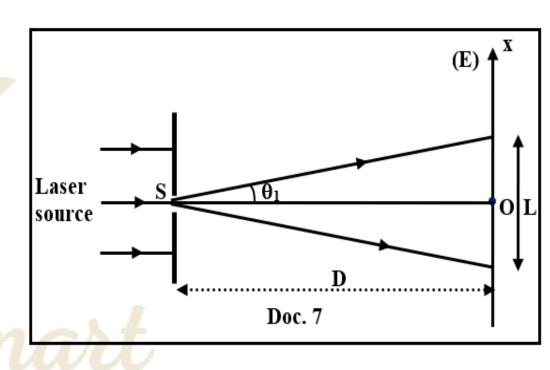


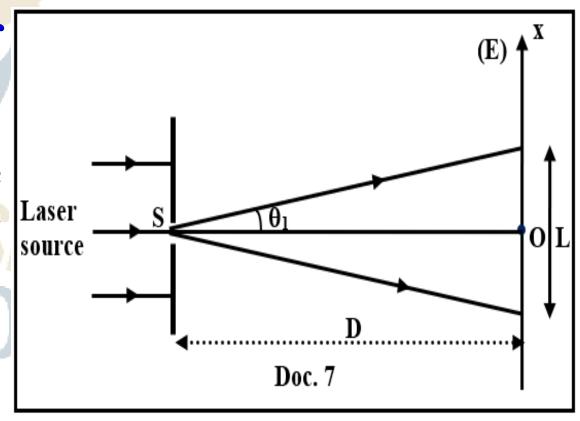
Unit III Chapter 13


Wave Aspect of Light - Diffraction

Prepared and Presented by: Mr. Mohamad Seif

SOLVING

Consider a horizontal slit S of width $a_1 = 0.1mm$. O is the center of the central bright fringe and $\alpha = 2\theta_1$ where α is the angular width of the central bright fringe (θ_1 is a small angle) (Doc. 7).



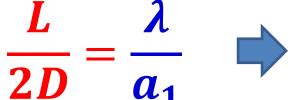
The screen (E) is placed parallel to the plane of the slits at a distance D = 2m. A laser source illuminates the slit by a monochromatic light of wavelength $\lambda = 600nm$ in air, under normal incidence.

- 1) Name the phenomenon that takes place at the slit S.
- 2)Show that the width L of the central bright fringe is given by the expression: $L = \frac{2\lambda D}{C}$.
- 3)Deduce the distance d between O and the center of the first dark fringe.
- 4)This experiment show evidence of an aspect of light. Name this aspect.

- $a_1 = 0.1mm$; $\alpha = 2\theta_1$; (θ_1 is a small angle); D = 2m; $\lambda = 600nm$
- 1) Name the phenomenon that takes place at the slit S.
- The phenomenon is Diffraction of light.
- 2)Show that the width L of the central bright fringe is given by the expression: $L = \frac{2\lambda D}{a_1}$.

From the figure
$$tan[\theta_1] = \frac{L/2}{D}$$

$$\theta_1 \ll \text{then:}$$


$$\theta_1 = \frac{L/2}{D} \implies But \theta_1$$

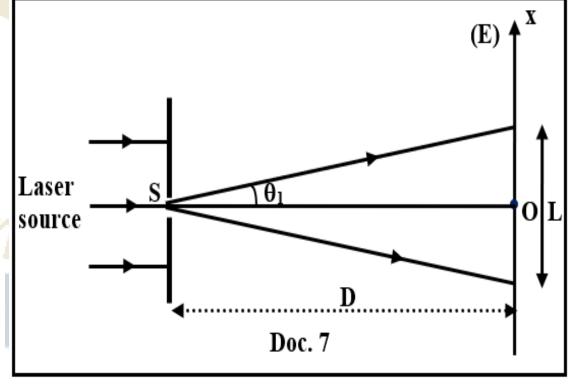
$$tan\theta_1 = \theta_1$$

$$L$$

But
$$\theta_1 = \frac{\lambda}{a_1}$$

$$\theta_1 = \theta_1$$

$$ACADE_{L} = \frac{2\lambda L}{a_1}$$


$$a_1 = 0.1mm$$
; $\alpha = 2\theta_1$; $(\theta_1 \ll)$; $D = 2m$; $\lambda = 600nm$

3)Deduce the distance d between O and the center of the first

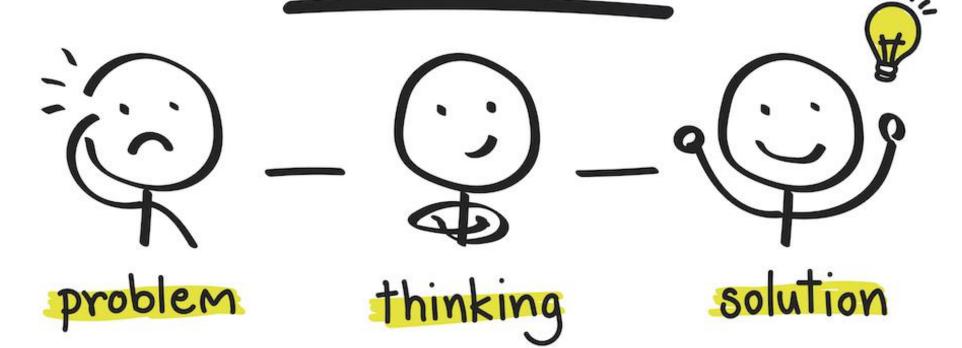
$$d = \frac{L}{2}$$
 where $L = \frac{2\lambda D}{a_1}$

$$d = \frac{2\lambda D}{2a_1} \qquad \Rightarrow \qquad d = \frac{\lambda D}{a_1}$$

$$d = \frac{600 \times 10^{-9} \times 2}{0.1 \times 10^{-3}} = 0.012m$$

4) This experiment show evidence of an aspect of light. Name this aspect.

The aspect of light shown by the experiment is wave aspect pf light



Be Smart Academy

SOLVING

A laser source emits a monochromatic cylindrical beam of light of wavelength $\lambda = 640$ nm in air. This beam falls normally on a vertical screen (P) having a horizontal slit F_1 of width a. The phenomenon of diffraction is observed on a screen (E) parallel to (P) and situated at a distance D = 4m from (P).

Consider on (E) a point M so that M coincides with the second dark fringe counted from O, the center of the central bright fringe.

 $OIM = \theta$ (θ is very small) is the angle of diffraction corresponding to the second dark fringe (Fig. 1).

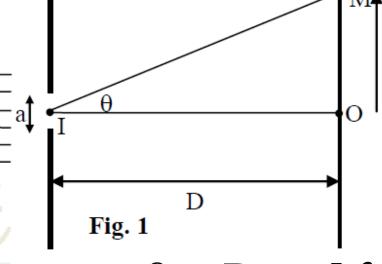
(E)

Fig. 1

- 1)Write the expression of θ in terms of a and λ .
- 2) Determine the expression of $OM = x \Rightarrow in terms of a, D and <math>\lambda$.
- 3)Determine the value of «a» if OM = 1.28cm.
- 4) We replace the slit F_1 by another slit F_1' of width 100 times larger than that of F_1 . What do we observe on the screen (E)?

$\lambda = 640$ nm; D = 4m; M coincides with 2nd D.F

1)Write the expression of θ in terms of a and λ .


The angle is small, and M coincides

with 2nd D.F then:

$$sin\theta_n \approx \theta_n = \frac{n\lambda}{a}$$

$$\theta = \frac{2\lambda}{a}$$

(E)

2) Determine the expression of OM = x in terms of a, D and λ .

$$tan\theta = \frac{opp}{hyp} = \frac{OM}{D} = \frac{x}{D}$$
 The angle $\theta \ll$ is then: $\theta = \frac{x}{D}$

$$\lambda = 640$$
nm; D = 4m; M coincides with 2nd D.F

$$\theta = \frac{2\lambda}{a}$$

$$\theta = \theta$$

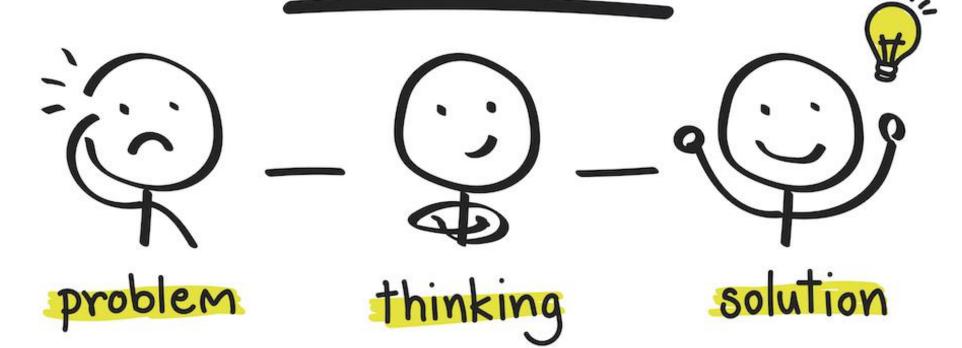
$$\frac{2\lambda}{a} = \frac{x}{Dnaxt}$$

$$AC = \frac{2\lambda D}{x} = \frac{x}{D}$$

$$\theta = \frac{x}{D}$$

- $\lambda = 640$ nm; D = 4m; M coincides with 2nd D.F
- 3) Determine the value of $\langle a \rangle$ if OM = 1.28 cm.

$$OM = x = \frac{2\lambda D}{a} \implies a = \frac{2\lambda D}{x} \implies a = \frac{2 \times 640 \times 10^{-9} \times 4}{1.28 \times 10^{-2}}$$


$$a = 0.4 \times 10^{-3} m$$

4) We replace the slit F_1 by another slit F_1' of width 100 times larger than that of F_1 . What do we observe on the screen (E)?

We observe a spot of light.

SOLVING

Part A: Measurement of the width of a slit

A laser beam of light, of wavelength in vacuum $\lambda = 632.8$ nm,

falls normally on a vertical slit of width "a".

The diffraction pattern is observed on a screen placed perpendicular to the leaser beam at a distance D = 1.5m from the slit.

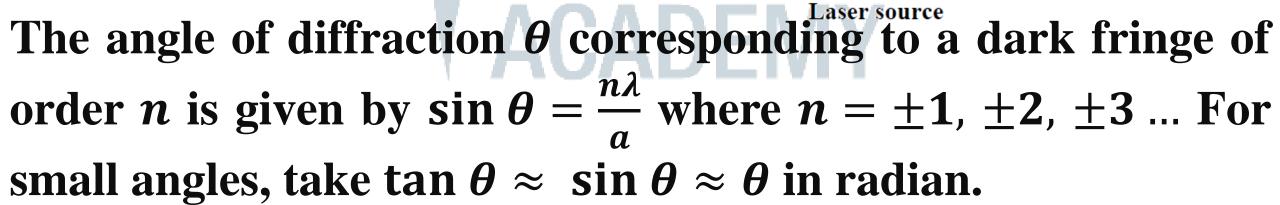


Fig.1

- 1)Describe the aspect of the diffraction pattern observed on the screen.
- 2) Write the relation among α , θ_1 and λ .
- 3) Establish the relation among a, λ , L and D.
- 4) Knowing that L = 6.3 mm, calculate the width "a" of the used slit

AC:ADEMY

- 1)Describe the aspect of the diffraction pattern observed on the screen.
- Alternating bright and dark fringes.
- The size of the central bright fringe is double that of any other bright fringe.
- The direction of the pattern of fringes is perpendicular to that of the slit.
- Central bright fringe id of maximum intensity.

$$\lambda = 632.8 \text{nm}; D = 1.5 \text{m};$$

2) Write the relation among α , θ_1 and λ .

$$sin\theta_n \approx \theta_n = \frac{n\lambda}{a}$$

$$\theta_1 = \frac{\lambda}{a}$$

3) Establish the relation among α , λ , L and D.

$$tan\theta_1 = \frac{L}{2D}$$

$$\theta \ll th$$

$$= \frac{L}{2D} \quad \theta \ll \text{then: } tan\theta_1 = \theta_1$$

Laser source
$$\theta_1 = \frac{L}{2L}$$

Fig.1

$$\theta_1 = \theta_1$$

$$\frac{\lambda}{a} = \frac{L}{2D}$$

$$\lambda = 632.8 \text{nm}; D = 1.5 \text{m};$$

4) Knowing that L = 6.3 mm, calculate the width "a" of the used slit

$$\frac{\lambda}{a} = \frac{L}{2D}$$

$$a = \frac{2\lambda D}{L}$$

$$a = \frac{2 \times 632.8 \times 10^{-9} \times 1.5}{6.3 \times 10^{-3}}$$

$$ADEM_{a=3\times10^{-4}m}$$

Part B: Controlling the thickness of thin wire

A manufacturer of thin wires wishes to control the diameter

wire

Fig.2

of his product.

diffraction (fig. 2).

He uses the same set-up mentioned in part (A) but he replaces the slit by a thin vertical wire. He observes on the screen the phenomenon of Laser source

For D = 2.60m, he obtains a central fringe of constant linear width $L_1 = 3.4mm$.

- 1) Calculate the value of the diameter " a_1 " of the wire at the illuminated point.
- 2)The manufacturer illuminates the wire at different positions under the same precedent conditions.
- Specify the indicator that permits the manufacturer to check that the diameter of the wire is constant.

ACADEMY

 $D = 2.60m, L_1 = 3.4mm$ mm.

1) Calculate the value of the diameter " a_1 " of the wire at the illuminated point.

$$a_1 = \frac{2\lambda D}{L_1}$$

$$a_1 = 0.967 \times 10^{-4} m$$

$$a_1 = \frac{2 \times 632.8 \times 10^{-9} \times 2.6}{3.4 \times 10^{-3}}$$

- $D = 2.60m, L_1 = 3.4mm$ mm.
- 2)The manufacturer illuminates the wire at different positions under the same precedent conditions. Specify the indicator that permits the manufacturer to check that the diameter of the wire is constant.

$$a_1 = \frac{2\lambda D}{L_1} Be Smart$$
 wir

Fig.2

The linear width of the central fringe (L).

Because if L is constant then a is constant Laser source

Part C: Measurement of the index of water

- We place the whole set-up of part (A) in water of index of refraction n_{water} . We obtain a new diffraction pattern.
- We find that for D=1.5m and $\alpha=0.3mm$, the linear width of the central fringe is $L_2=4.7$ mm.
- 1) Calculate the wavelength λ' of the laser light in water.
- 2) a) Determine the relation among λ , λ' and n_{water} .
 - b) Deduce the value of n_{water} .

 n_{water} ; D = 1.5m; a = 0.3mm; $L_2 = 4.7mm$.

1) Calculate the wavelength λ' of the laser light in water.

$$\frac{\lambda'}{a} = \frac{L}{2D}$$

$$\lambda' = \frac{aL}{2D}$$

Apply the same relation we obtain:
$$\lambda' = \frac{0.3 \times 10^{-3} \times 4.7 \times 10^{-3}}{2 \times 1.5}$$

$$Sm\lambda' = 470 \times 10^{-9}m$$

$$ADEN_{\lambda}Y = 470nm$$

n_{water} ; D = 1.5m; a = 0.3mm; $L_2 = 4.7mm$.

2) a) Determine the relation among λ , λ' and n_{water} .

$$\lambda' = \frac{V}{v}$$
 And

$$\lambda = \frac{C}{\nu}$$

$$\mathbf{v} = \mathbf{v}$$

$$\frac{V}{\lambda'} = \frac{C}{\lambda}$$

$$\frac{\lambda}{\lambda'} = \frac{C}{V}$$

b) Deduce the value of n_{water} .

$$\frac{1}{n_{water}} = \frac{\lambda'}{\lambda}$$

$$\frac{1}{n_{water}} = \frac{470 \times 10^{-9} m}{632.8 \times 10^{-9} m}$$

$$n_{water} = rac{632.8 \times 10^{-9} m}{470 \times 10^{-9} m}$$

Smart
$$ADEM_{water} = 1.34$$

